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Abstract

The preferential concentration of dense particles in a downward, fully developed turbulent square duct

flow at Res ¼ 360, based on mean friction velocity and duct width, is studied using large eddy simulations.

Due to the low volume fractions involved (maximum volume fraction <10�5), one-way coupled simulations
are performed, i.e., two-way coupling and particle–particle collisions are not considered. The continuous

and the dispersed phases are treated using Eulerian and Lagrangian approaches, respectively. A finite

volume based second-order accurate fractional step scheme is used to integrate the unsteady, three-

dimensional Navier–Stokes equations. The subgrid stresses are modeled with a dynamic subgrid kinetic

energy model, as reported previously. The particle equation of motion includes drag, lift and gravity forces

and is integrated using the fourth-order accurate Runge–Kutta method. Four cross-sectional locations

representative of the mean secondary flow patterns and six particle response times were chosen to study the

effect of location and particle inertia on preferential concentration.
To demonstrate preferential concentration, variation of vorticity magnitude, swirling strength, maxi-

mum compressional strain-rate, and ru : ru, and their probability distribution functions (PDF) condi-

tioned on particle presence, with particle response time is presented. Since the square duct cross-section is

inhomogeneous, we also study variation in preferential concentration with cross-sectional location. Par-

ticles are seen to accumulate in regions of high ru : ru and strain-rate and in regions of low swirling

strength. In general, particles accumulate in regions of low vorticity magnitude. However, near the wall, the

tendency of particles to accumulate in regions of high vorticity increases with response time.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Square duct; Particles; Large eddy simulation
*
Corresponding author.

0301-9322/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijmultiphaseflow.2003.11.003



28 C.M. Winkler et al. / International Journal of Multiphase Flow 30 (2004) 27–50
1. Introduction

Particle transport in turbulent flows has applications ranging from industrial sprays, electro-
static precipitators, and internal combustion engines to pollutant transport in the atmosphere and
oceans. In many of these flows, the primary issues of concern are particle dispersion, deposition
and mixing. Particle dispersion involves the transport of particles by the turbulent flow structures.
It can be somewhat counterintuitive to think of turbulence as a mechanism which ‘‘de-mixes’’
particles. However, preferential concentration of particles in turbulent flows is known to occur
(Squires and Eaton, 1990; Wang and Maxey, 1993; Wang and Squires, 1996). Non-uniform
particle and droplet concentrations in flows can significantly inhibit reaction and combustion
rates as well as decrease the efficiency of evaporators in heat exchangers. Therefore, it is important
to have a fundamental understanding of this phenomenon. Numerical simulations have become a
valuable tool for studying preferential concentration as they allow quantities to be computed that
are often difficult to measure experimentally. Attempts to predict particle-laden turbulent flows
have resulted in several computational techniques which can generally be classified as either
Eulerian or Lagrangian. Eulerian approaches envision the dispersed phase as a continuum and,
equations governing its momentum and continuity are formulated and solved much like the
carrier phase. In the Lagrangian method, trajectories of individual particles are computed by
solving the particle equation of motion. A recent review of numerical methods for particle-laden
flows is given by Loth (2000).

The classification of the carrier flow simulations can be made according to the degree of res-
olution of the turbulent flow scales. The most accurate method for simulating turbulence is known
as Direct Numerical Simulation (DNS). In DNS, all scales of motion are resolved without any
modeling or empiricism. The only errors that arise are from the numerical method used to solve
the equations. Although highly accurate, DNS is restricted to relatively low Reynolds numbers,
since the computational resources needed to fully resolve high Reynolds number turbulent flows
are often prohibitive. A less computationally intensive method is Large Eddy Simulation (LES),
which resolves only the large, energy containing scales in the flow and models the effects of the
small scales, which are thought to be universal. Modeling of the unresolved, or subgrid scales, has
resulted in several works on LES. A recent review of LES models is given by Meneveau and Katz
(2000).

There are a number of previous studies on turbulent flow in geometries such as isotropic
turbulence (Yeung and Pope, 1989), channels (Kim et al., 1987) and pipes of circular cross-section
(Eggels et al., 1994). However, only a few studies on internal flows with only one homogeneous
direction, such as a square duct, have been conducted. For unladen flow, one of the first LES
studies in a square duct was performed by Madabhushi and Vanka (1991) using the Smagorinsky
model and a 65 · 65 · 32 grid at Res ¼ 360. They were able to predict the turbulence driven sec-
ondary flows using LES. An interesting feature observed was that the instantaneous cross-stream
velocities were as high as ten times their time-averaged values. Also, the secondary flows were
found to convect mean flow momentum from the center of the duct to its corners. This caused a
bulging of the streamwise velocity contours towards the corners. They also noted that the Rey-
nolds normal and shear stresses equally contribute to the production of mean streamwise vor-
ticity. Other studies on single phase flow in a square duct include those of Demuren and Rodi
(1984), Kajishima and Miyake (1992), Gavrilakis (1992), Huser and Biringen (1993), Madabhushi
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(1993) and Madabhushi and Vanka (1993). In related work, Bradshaw (1987) examined secondary
flows in curved ducts.

To the authors� knowledge, no work involving particle transport in square ducts has been
reported. However, gas-particle flows in simpler geometries have been studied by a number of
researchers (Wang and Maxey, 1993; Wang and Squires, 1996; Uijttewaal and Oliemans, 1996;
Zhang and Ahmadi, 2000). It is known that in isotropic turbulence, particles preferentially
accumulate in regions of low vorticity and high strain-rate (Squires and Eaton, 1990). Ferry and
Balachandar (2001) examined channel flow and showed that fluid statistics such as the swirling
strength, ki, and maximum compressional strain-rate, ru, provide a better indication of the
preferential concentration of particles. They demonstrated that particles collect in regions of low
ki and high ru. The swirling strength, which is the magnitude of the imaginary part of the complex
conjugate eigenvalue pair of the fluid velocity gradient tensor, has been used to identify vortices
(Zhou et al., 1998; Adrian et al., 2001). The swirling strength is zero when all the eigenvalues of
ru are all real. A positive value of ki corresponds to a local dominance of rotation-rate over
strain-rate (Adrian et al., 2001).

Vorticity can arise from either swirling or shear. However, it is the swirl that has a greater
centrifugal effect on particles than shear and hence is a better choice than vorticity for preferential
concentration studies. The maximum compression strain-rate, ru, is the most negative eigenvalue
of the strain-rate tensor. Other quantities which are useful in identifying regions of preferential
concentration of particles include ru : ru and enstrophy (Druzhinin and Elghobashi, 1998).

To fully appreciate the significance of ru : ru, one must examine its derivation. Consider an
Eulerian formulation for the particle velocity field. To first order in particle response time sp, if
one neglects body forces, the particle velocity field, up, may be expressed as a function of the fluid
velocity field, u, and particle response time, sp, as follows (Maxey, 1987; Ferry and Balachandar,
2001)
up ¼ u� sp
ou

ot

�
þ u � ru

�
ð1Þ
Maxey (1987) has shown that this particle velocity field is not divergence free. Taking the
divergence of (1) gives
r � up ¼ �sp
ouj
oxi

oui
oxj

¼ �spru : ru ð2Þ
It is clear from (2) that particles will accumulate where ru : ru is positive.
Fessler et al. (1994) also studied preferential concentration of particles in channel flow. Fessler

et al. (1994) experimentally found that when the Stokes number (based on the Kolmogorov time
scale) was approximately one, the particles had the maximum departure from a random distri-
bution. Zhang and Ahmadi (2000) examined the deposition of particles in a channel flow. In their
work, particles are seen to deposit along low speed streaks which suggests that particles are
neither uniformly nor randomly dispersed in the flow field. In geometries with two homogeneous
directions, such as channels and pipes, the preferential concentration statistics vary in only one
direction. In isotropic turbulence, statistics are not a function of any direction. However, in a
square duct, the secondary flows in the cross-section, resulting from gradients in the Reynolds
stresses, add additional complexity to the preferential concentration phenomenon.
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Other researchers, such as Chung and Troutt (1988), who studied a particle-laden axisymmetric
jet, have suggested that there exists a range of the particle response time where the particles may
undergo preferential concentration. They state that particles with large response times are dis-
persed the least.

Crowe et al. (1995) have observed that in the wake of a bluff body, particles tend to accumulate
along the edges of vortex structures. They term this phenomenon ‘‘focusing’’, analogous to the
preferential concentration. Particles with a Stokes number (St) of unity are found to exhibit the
maximum focusing. However, they only studied Stokes numbers of 0.01, 1.0, and 100, which does
not accurately resolve the trend around St ¼ 1, where the focusing effect is maximum.

In a mixing layer, Tageldin and Cetegen (1997) experimentally observed size-selective disper-
sion of droplets. They found rapid entrainment of small droplets and found a much slower
entrainment of large droplets due to Stokes number effects. This confirms the findings of Lazaro
and Lasheras (1992a,b), who also mention that the particle concentration field is related to the
streaky nature of the large-scale structures. Further experimental evidence of non-uniform par-
ticle dispersion is given in Longmire and Eaton (1992), who studied a particle-laden round jet.
They suggest that convection from large-scale turbulent structures controls local particle con-
centration and dispersion.

Despite the relatively large number of works on preferential concentration of particles in
turbulence, there is a lack of information on this phenomenon in complex turbulent flows. In the
present study, particle-laden turbulent flow in a square duct is investigated. It is expected that the
secondary flows in a square duct will provide additional complexities compared to a channel flow,
and the particle dispersion may be significantly enhanced as a result of the strong secondary flows.
Several particle response times and cross-sectional locations in the square duct are studied to
identify the statistical trends of the effects of secondary flows on preferential concentration of
particles.
2. Overview of the simulations

2.1. Numerical method

The incompressible form of the three-dimensional, unsteady Navier–Stokes equations is solved
using a second-order accurate finite volume method with central differencing of spatial derivatives
on a non-staggered grid. The friction Reynolds number based on average friction velocity,

us ¼ ð�ssw=qfÞ
1=2

, and duct width, d, is Res ¼ 360, where �ssw and qf are the mean wall shear stress
averaged over the four walls and the fluid density, respectively. Diffusion terms are handled with
the Crank–Nicholson scheme and the convective terms with the second-order accurate Adams–
Bashforth scheme. The Harlow–Welch fractional step method was used to decouple the
momentum and continuity equations. An algebraic multigrid solver was used to solve the pressure
Poisson equation resulting from the fractional step method. The equations of motion for the fluid
are given by
r � u ¼ 0 ð3Þ
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ou

ot
þr � ðuuÞ ¼ �rp þ 1

Res
r2u ð4Þ
where the quantities have been made dimensionless by us and d. The time scale is given by d=us.
The square duct dimensions are d� d� 2pd and the grid consisted of 80· 80· 128 unstructured
Cartesian cells, in the respective directions. The components of the velocity vector u in the two
wall-normal and streamwise directions are u, v and w, respectively. The dimensionless time step is
set to 1 · 10�4. This time step is smaller than the smallest particle response time and hence suf-
ficient to resolve the particle trajectories.

Top-hat filtering, implemented through finite-volume implicit grid-filtering, was used to gen-
erate the equations governing the transport of the large eddies. After filtering, the equations of
motion become the following
r � �uu ¼ 0 ð5Þ

o�uui
ot

þ o

oxj
ð�uui�uujÞ ¼ � o�PP

oxi
þ o

oxj

1

Res

�"
þ mT

�
o�uui
oxj

#
þ o

oxj
mT

o�uuj
oxi

 !
þ 4di3 ð6Þ
The ‘‘over-bar’’ notation denotes application of the top-hat filter. The last term on the right hand
side of (6) represents the mean streamwise pressure gradient. The eddy viscosity, mT, is determined
from the subgrid kinetic energy, as described in the following section.
2.2. Subgrid modeling

The subgrid scales are modeled with a dynamic subgrid kinetic energy model developed by Kim
and Menon (1997). The test-filter grid, having a resolution of 40· 40· 64 in the two wall normal (x
and y) and streamwise (z) directions, respectively, was first generated. A 2.5% geometric pro-
gression grid stretching is used on the test filter grid in the wall normal directions. Each test-filter
grid cell was then subdivided into 8 uniform fine-grid cells, which gave a final grid resolution of
80· 80· 128. The first node away from the wall was located at 1.76 wall units.

The dynamic subgrid kinetic energy model employed in this work, given in detail in Kim and
Menon (1997), can be summarized as follows. The transport equation for the subgrid kinetic
energy, ksgs, is given as
oksgs
ot

þ �uui
oksgs
oxi

¼ mTj�SSj2 � eþ o

oxi
mT

oksgs
oxi

� �
ð7Þ
where the eddy viscosity, mT, is given by
mT ¼ Ct
�DDk1=2sgs ð8Þ
and the dissipation rate, e, is given by
e ¼ Ce

k3=2sgs

�DD
ð9Þ
where �DD is the grid scale and Ce and Ct are dynamically determined. The resolved strain-rate
tensor, �SS, is expressed as
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�SSij ¼
1

2

o�uui
oxj

 
þ o�uuj

oxi

!
ð10Þ
and its magnitude is defined as
j�SSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�SSij�SSij

q
ð11Þ
Let the ‘‘hat’’ notation symbolize the application of the test filter to a quantity and the ‘‘overbar’’
notation symbolize application of the grid filter. The Leonard stress tensor is then defined as
Lij ¼ d�uui�uuj�uui�uuj � �̂uu�uui�̂uu�uuj ð12Þ
The kinetic energy at the test filter level can be found from the trace of (12)
ktest ¼
1

2
ðd�uuk�uuk�uuk�uuk � �̂uu�uuk�̂uu�uukÞ ð13Þ
The dissipation at the test filter level is expressed as
etest ¼ ðmþ mTÞ
do�uui

oxj

o�uui
oxj

o�uui
oxj

o�uui
oxj

0@ � o�̂uu�uui
oxj

o�̂uu�uui
oxj

1A ð14Þ
Through a similarity assumption between the subgrid stress tensor and the Leonard stress tensor,
one can arrive at the following equation
Lij ¼ �2CtD̂Dk
1=2
test

�̂SS�SSij þ
1

3
dijLkk ð15Þ
The least-square method of Lilly (1992) is then used to obtain a formula for Ct
Ct ¼
1

2

Lijrij

rijrij
ð16Þ
where
rij ¼ �D̂Dk1=2test
�̂SS�SSij ð17Þ
By invoking a similarity assumption between the dissipation at the test filter and grid filter levels,
an equation for the dissipation at the test filter level is given as
etest ¼ Ce
k3=2test

D̂D
ð18Þ
One may now calculate Ct and Ce. These constants have been constrained to be positive in the
current simulations.
2.3. Particle motion

The particle equation of motion includes drag, lift in the two wall directions (x and y) and
gravity in the streamwise direction (z) and is given by Eq. (19):
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mp

dup

dt
¼ mp

ðuðxpÞ � upÞ
sp

þ ðmp � mfÞgþ 3:08mp

m1=2

dp
qp
qf

ðw� wpÞ
ow
ox

���� ����1=2sgn ow
ox

� �
di1

þ 3:08mp

m1=2

dp
qp
qf

ðw� wpÞ
ow
oy

���� ����1=2sgn ow
oy

� �
di2; ð19Þ
where up is the particle velocity vector with wp being its streamwise component, mp and mf are the
particle and fluid mass, respectively, g is gravitational acceleration, dp is the particle diameter, qp

and qf are the particle and fluid densities, respectively, and m is the kinematic viscosity. The
notation ‘‘sgn’’ implies taking the sign of the bracketed quantity. The particle response time is
given as
sp ¼
4dpqp

3Cdqf juðxpÞ � upj
ð20Þ
where the drag coefficient is taken to be the following:
Cd ¼
24

Rep

� �
1
�

þ 0:15Re0:687p

�
ð21Þ
with the particle Reynolds number defined as
Rep ¼
juðxpÞ � upjdp

m
ð22Þ
The particle equation of motion is solved using the fourth-order Runge–Kutta scheme. Six dif-
ferent particle response times are studied in this work, and are given in Table 1 along with cor-
responding diameters and density ratios. The particle response time, sþp , is given in wall units.
Subgrid fluctuations of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ksgs=3

p
are scaled by a Gaussian distributed random number and iso-

tropically added to the fluid velocity at the particle position to more accurately represent the
instantaneous velocity. For each different response time, trajectories of 400,000 particles are
computed. Elastic collisions with the wall are assumed. The particles are initially positioned
randomly in the domain with initial velocities equal to the local fluid velocity and are evolved for
at least 10 particle response times (based on the largest sp) to allow the particles to lose any initial
inertial effects. Statistics are then averaged for at least 19 particle response times (and over 604
particle response times for the smallest particles). Statistics were averaged in the homogeneous
direction as well as in symmetric planes in the cross-section when appropriate. Since it is only by
1

le properties

dp=d� 106 qp=qf

117.85 2500

166.67 2500

235.70 2500

333.33 2500

471.40 2500

666.67 2500
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chance that a particle is located at a fluid grid point, second order Lagrange polynomials were
used to interpolate the fluid quantities to a particle position. This involved 27 fluid quantities
(such as u, v, w and ksgs) surrounding the particle.
3. Results

To validate the code, channel flow at Res ¼ 180, based on friction velocity and channel half-
height, was simulated on a grid consisting of 100· 100 · 50 cells in the streamwise, wall-normal,
and spanwise directions, respectively. Three LES models were chosen for this validation. The first
was the ‘‘no-model’’ LES, which behaves as a coarse grid DNS. The second model chosen was the
static coefficient kinetic energy model of Horiuti (1985) with wall-damping. Lastly, the dynamic
coefficient kinetic energy model described in Section 2.2 was implemented. Results are compared
with the DNS of Kim et al. (1987).

Fig. 1 shows the mean streamwise velocity obtained from each of the various subgrid models. It
is seen that the Horiuti model overpredicts the centerline velocity to a greater degree than the
other models tested. The no-model LES and the dynamic kinetic energy model give nearly
identical results for the streamwise velocity and both compare well with the DNS data.

Fig. 2 displays the streamwise rms velocity given by each of the models. It is seen that the
dynamic model most closely matches the DNS data. The Horiuti model and the no-model LES
are both seen to overpredict the streamwise rms velocity. But, all models under predict the wall
normal rms velocity (Fig. 3). In case of spanwise rms velocity, the no-model LES overpredicts it,
while the Horiuti and the dynamic models underpredict it (Fig. 4). Similar trends were observed
for the Reynolds stress as well (Fig. 5).
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Fig. 1. Mean streamwise velocity for channel flow at Res ¼ 180.



y+

u
rm

s

10-1 100 101 102

0.5

1

1.5

2

2.5

3

3.5
urms DNS (Kim, Moin, Moser 1987)
urms no model
urms Horiuti k model
urms dynamic k model

Fig. 2. Mean streamwise RMS velocity for channel flow at Res ¼ 180.

y+

v rm
s

10-1 100 101 1020.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
vrms DNS
vrms no model
vrms Horiuti k model
vrms dynamic k model

Fig. 3. Mean wall-normal RMS velocity for channel flow at Res ¼ 180.

C.M. Winkler et al. / International Journal of Multiphase Flow 30 (2004) 27–50 35
The LES square duct fluid calculation, using the approach outlined in Section 2.2, was
validated against the DNS data of Gavrilakis (1992), who studied the flow at Res ¼ 300. The
mean streamwise velocity at the wall bisector is shown in Fig. 6 and agrees within 0.5% at the
centerline with Gavrilakis (1992). Fig. 7 displays the rms velocites and it is seen that the peak
of the streamwise fluctuating velocity compares within approximately 2% of Gavrilakis (1992)
data.
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It is pertinent here to briefly consider the qualitative nature of the secondary flows in a square
duct. Hence, the cross-sectional contours of the streamwise velocity are shown in Fig. 8. They are
in qualitative agreement with those in the above mentioned square duct studies. In the current
simulations, the fluid statistics were averaged for more than 60 dimensionless time units.

In the cross-section of a square duct, one may identify different regions of flow patterns. We
have chosen four such locations in this work, all identifiable from a time-mean sense (see Fig. 9).
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Instantaneously, the eddies are stronger and more complex, as shown in Fig. 10. Due to the finite
resolution of the grid, the nearest node to each desired location was chosen. The locations are as
follows: the center of the duct where the secondary flows are minimal (xþ ¼ 177:2, yþ ¼ 177:2),
the near-wall region (xþ ¼ 177:2, yþ ¼ 19:8), the center of the secondary flow vortices (xþ ¼ 76:7,
yþ ¼ 31:2), and the saddle region between the secondary flow vortices (xþ ¼ 59:5, yþ ¼ 59:5). An
area of 20.25 square wall units about each point was used to collect particle statistics.
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The subgrid kinetic energy at the wall bisector is shown in Fig. 11. Due to the relatively fine
resolution of the grid used in this work, there is little subgrid kinetic energy in the duct center.
Thus, the method used to add subgrid fluctuations to the fluid velocity does not significantly alter
results in the duct center, i.e., the subgrid energy is not causing a homogenous mixing of particles
in the duct center.
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Now, we present variation of hxi, hkii, hrui, and hru : rui, and their probability distribution
functions, with sþp and the cross-sectional location. The notation h i denotes the mean value of a
quantity evaluated at the particle locations. It is obtained by interpolating the relevant fluid
quantity to the particle positions and then averaging it in the homogeneous direction, time and the
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appropriate symmetric cross-sectional points. The corresponding mean values for the fluid (tra-
cer) particles are also presented and are obtained by averaging the grid point values of the fluid
quantity in the homogeneous direction, corresponding to the cross-sectional location of interest.
The PDFs conditioned on particle presence are averaged only in time and the appropriate sym-
metric cross-sectional points and are presented for only three values of sþp (¼ 0.25, 1, and 8), along
with the corresponding fluid PDF.

3.1. Effect of vorticity magnitude

It has been shown by previous researchers that particles accumulate in regions of low vorticity
(Squires and Eaton, 1990; Wang and Maxey, 1993). Typically, when it is stated that particles
collect in low vorticity regions, the conclusion is drawn upon evidence from simulations of flows
with little or no mean shear, such as isotropic turbulence. However, particles can experience
vorticity from either swirl (i.e. rotation) or shear. Consider laminar plane Couette flow. This flow
has no large scale swirl, but exhibits vorticity due to the shear. It is vorticity due to swirl that is
largely responsible for particles spinning out of vortices and accumulating preferentially. Thus,
near walls, where shear plays a dominant role, vorticity is not likely to be a strong measure of
preferential concentration. It is for this reason that the swirling strength, hkii, is a better measure
of preferential concentration than vorticity. To corroborate this statement, the vorticity magni-
tude will now be examined to demonstrate that near a wall, where shear dominates, the vorticity
(and hence enstrophy) is not a good measure of preferential concentration of particles.

Fig. 12 shows the variation of mean vorticity magnitude hxi, evaluated at the particle positions,
with sþp at the various cross-sectional locations. As expected, the maximum value of hxi, for a
given sþp , occurs near the wall. In the near-wall and vortex center regions, as sþp increases, the
particles accumulate in regions of increasing hxi, which contradicts the general expectation that
inertial particles avoid regions of high vorticity. This trend is less apparent for the saddle region.
At the duct center, variation in vorticity is small and hence the trend is not clear. This is expected
since the duct center is a region of low shear. From the above discussion, it is clear that vorticity is
not a good measure of preferential concentration of particles, especially in high shear regions.

The above trends are reflected in the PDFs of x as well. Shown in Figs. 13–16 are the PDFs of
x for the four cross-sectional locations. It is clear that the most inertial ðsþp ¼ 8Þ particles accu-
mulate in regions of higher vorticity than the other particles, especially in the near-wall region
(Fig. 13). In fact, they accumulate in regions of higher vorticity than even the fluid particles,
shown in Fig. 12. As we move away from the wall, the PDFs of the less inertial particles are
shifted to values of lower vorticity than the fluid PDF, indicating that the smaller particles
accumulate preferentially in low vorticity regions. The above trends get weaker as one moves
towards the duct center.

3.2. Effect of swirling strength

It is expected that particles will accumulate in regions of low swirling strength, ki. Swirling
strength is defined as the magnitude of the imaginary part of the complex conjugate eigenvalues of
the velocity gradient tensor. Ferry and Balachandar (2001) have shown that for a channel flow,
particles collect in regions of low swirling strength. Unlike hxi, hkii accounts only for regions of
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vorticity which have the nature of a core (Adrian et al., 2001). Therefore, it is expected that hkii
will be a more appropriate measure of preferential concentration in regions of flow with high
shear. Shown in Fig. 17 is the variation of hkii with sþp for the various cross-sectional locations,
along with the mean values for the fluid particles. Firstly, particles of all response times studied
accumulate in regions of lower hkii when compared to the fluid particles. This trend was not as
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apparent in the case of vorticity magnitude. It is seen that for the near-wall and vortex center
locations, as sþp increases particles accumulate in regions of decreasing hkii before passing through
a minimum around sþp ¼ 4. These trends in the mean values confirm the trends in channel flow
study by Ferry and Balachandar (2001). The reversal in trend for the high inertia particles is to be
expected as these particles do not respond to the surrounding fluid as well as the low inertia
particles do. Hence, they do not show particular abhorrence for high swirling strength regions. As
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the distance from the wall increases, the swirling strength decreases. For the saddle region and the
duct center (not shown), it is seen that the trends in hkii with sþp are less apparent.

The PDFs of swirling strength for the near wall and vortex center regions are shown in Figs. 18
and 19. It is again clear that inertial particles accumulate in regions of smaller swirl compared to
the fluid particles. Further, we can see that the smaller particles accumulate in regions of higher
swirling strength compared to the large particles. As the distance from the wall increases, we see
similar trends but to a lesser degree (figures not shown).
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3.3. Effect of maximum compressional strain-rate

It is now well known that particle collect in regions of high strain-rate (Squires and Eaton,
1990; Wang and Maxey, 1993). Ferry and Balachandar (2001) have shown that the maximum
compressional strain-rate, ru, is a good measure of preferential concentration in a channel flow. It
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is defined as the most negative eigenvalue of the strain-rate tensor. Shown in Fig. 20 is the var-
iation of hrui with sþp . It is seen that as sþp increases particles accumulate in regions of higher
magnitudes of hrui up to a certain sþp , after which the trend is reversed. This maximum occurs in
the range 26 sþp 6 4. The inertial particles experience higher magnitudes of hrui than the fluid
particles, indicating their preferential accumulation in regions of high strain. The trends for the
other two locations are weak and are not shown.
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From the PDFs also, it can be seen that particles tend to collect in regions of higher com-
pressional strain (negative strain) when compared to the fluid particles (see Figs. 21 and 22).
3.4. Effect of ru : ru

The final quantity we examine is ru : ru, which can also be expressed as jSj2 � jXj2, where S
and X are the strain-rate and rotation-rate components, respectively, of the velocity gradient
tensor. As mentioned earlier, positive values of ru : ru indicate an accumulation of particles.
Shown in Fig. 23 is the variation of hru : rui with sþp . It is seen that for the near-wall and vortex
center locations, as sþp increases particles accumulate in regions of increasing hru : rui before
passing through a maximum. This maximum occurs within the range 26 sþp 6 4. These trends are
similar to those seen in the channel flow work of Ferry and Balachandar (2001). Initially, with
increasing inertia, particles show a greater affinity for regions of high hru : rui. However, beyond
a certain response time where the peak occurs, the particles are too inertial to respond to the
surrounding fluid and hence the decrease in preferential accumulation. In the near wall region,
particles have the maximum preferential concentration, when compared to other locations,
indicated by the largest values of hru : rui. Near the wall, the fluid velocity gradients are greater
than away from the wall and hence the larger values of hru : rui.

Figs. 24 and 25 display the PDFs of hru : rui in the near-wall and vortex center regions for
three particle response times along with the fluid PDF. It is clear that ru : ru measured at the
particle locations is shifted towards a positive mean when compared to the mean value for the
fluid particles (which is zero). The mean value increases initially with response time and decreases
thereafter, reflecting the above trends.
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4. Conclusions

The preferential concentration of heavy particles in a turbulent square duct flow was studied
using large eddy simulations. A dynamic subgrid kinetic energy model was used to model the
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unresolved scales. Six particle classes (sþp ¼ 0:25, 0.5, 1, 2, 4, and 8) and four cross-sectional
locations were examined. Particles are seen to accumulate in regions of high ru : ru and com-
pressional strain and regions of low swirling strength. These trends are more pronounced for
particles with intermediate response times. Of the four locations studied, preferential accumula-
tion was most pronounced in the near-wall and vortex center regions. The duct center, being the
farthest location from the walls, showed relatively weak preferential accumulation of particles.

Further, we have demonstrated that vorticity is not a precise measure of preferential concen-
tration of particles, especially near the wall where shear dominates swirl. Swirling strength is a
more appropriate measure of preferential concentration in regions of high shear.
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